Potential impacts of microplastic pollution on soil–water–plant dynamics

Author:

Bakhshaee Alireza,Babakhani Peyman,Ashiq Muhammad Masood,Bell Kati,Salehi Maryam,Jazaei Farhad

Abstract

Abstract This study was designed to assess the potential impact of microplastic (MP) pollution on soil hydrology, specifically in retaining and releasing moisture. Herein, High-Density Polyethylene (HDPE) MP of different sizes (i.e., 0.5–1, 1–3, and 3–5 mm) and shapes (i.e., fiber, film, and fragment) were evaluated for their effects on water retention curve (WRC) of sandy loam soil, chosen for its agricultural relevance and widespread environmental presence of HDPE. Nine contamination scenarios were simulated with a low MP pollution rate, 0.01% w/w. Van Genuchten models were used to assess plant available water (PAW), wilting point (WP), and water holding capacity (WHC). Results showed that studied MP could significantly affect WRC and PAW mainly by changing WHC rather than WP and that this effect varied with MP shape and size. According to the results, fragment MP had the greatest impact on soil WHC by increasing 36.3%, followed by fibers and films by 19.8% and 15.7%. MP particles significantly increased WHC, while WP remained relatively unchanged. An observed trend indicated that the impact on WHC increased with the size of the MP particles. These findings emphasize the need to manage soil MP pollution to protect plant growth, agriculture, and water dynamics.

Funder

National Institute of Food and Agriculture

Brown and Caldwell

National Science Foundation

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3