hBcl2 overexpression in BMSCs enhances resistance to myelin debris-induced apoptosis and facilitates neuroprotection after spinal cord injury in rats

Author:

Tian Dasheng,You Xingyu,Ye Jianan,Chen Gan,Yu Hang,Lv Jianwei,Shan Fangli,Liang Chao,Bi Yihui,Jing Juehua,Zheng Meige

Abstract

AbstractAfter spinal cord injury (SCI), the accumulation of myelin debris at the lesion exacerbates cell death and hinders axonal regeneration. Transplanted bone marrow mesenchymal stem cells (BMSCs) have been proven to be beneficial for SCI repair, but they are susceptible to apoptosis. It remains unclear whether this apoptotic process is influenced by myelin debris. Here, we constructed rat BMSCs overexpressing human B-cell lymphoma 2 (hBcl2) alone (hBcl2 group), BMSCs overexpressing hBcl2 with an endoplasmic reticulum-anchored segment (hBcl2-cb) (cb group), and a negative control group (NC group) for transplantation in this study. Immunocytochemistry staining validated the successful expression of hBcl2 in BMSCs within the hBcl2 group and cb group. All BMSCs from each group exhibited the ability to phagocytize myelin debris. Nevertheless, only BMSCs derived from the hBcl2 group exhibited heightened resistance to apoptosis and maintained prolonged viability for up to 5 days when exposed to myelin debris. Notably, overexpression of hBcl2 protein, rather than its endoplasmic reticulum-anchored counterpart, significantly enhanced the resistance of BMSCs against myelin debris-induced apoptosis. This process appeared to be associated with the efficient degradation of myelin debris through the Lamp1+ lysosomal pathway in the hBcl2 group. In vivo, the hBcl2 group exhibited significantly higher numbers of surviving cells and fewer apoptotic BMSCs compared to the cb and NC groups following transplantation. Furthermore, the hBcl2 group displayed reduced GFAP+ glial scarring and greater preservation of NF200+ axons in the lesions of SCI rats. Our results suggest that myelin debris triggers apoptosis in transplanted BMSCs, potentially elucidating the low survival rate of these cells after SCI. Consequently, the survival rate of transplanted BMSCs is improved by hBcl2 overexpression, leading to enhanced preservation of axons within the injured spinal cord.

Funder

the Provincial Natural Science Research Key Project of Colleges and Universities of Anhui Province

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3