Conditioned medium of mesenchymal stem cells pretreated with H2O2 promotes intestinal mucosal repair in acute experimental colitis

Author:

Liu Peng,Xie Xiao-ran,Wu Hao,Li Huan,Chi Jing-shu,Liu Xiao-ming,Luo Ju,Tang Yu,Xu Can-xiaORCID

Abstract

AbstractMesenchymal stem cells (MSCs) are a new therapeutic strategy for inflammatory bowel disease (IBD), and their efficacy has been widely recognized. However, there are still some challenges in cell therapy, including stable cell passage, laboratory conditions for cell culture, high-cost burden, and poor transplantation. The conditioned medium (CM) of MSCs is considered be an excellent alternative to cell transplantation, but the paracrine group in MSC-CM is limited in variety and low in concentration, which cannot meet the therapeutic needs of injured tissues and needs to be optimized. Pretreatment with low concentration of hydrogen peroxide (H2O2) can not only protect cells from oxidative damage, but also play a role similar to growth factors and regulate the physiological function of stem cells, to obtain an improved conditioned medium. To determine the optimal protocol for pretreatment of MSCs with H2O2, and to study the efficacy and potential mechanism of MSC-CM pretreated with H2O2 on Dextran Sulfate Sodium (DSS)-induced acute experimental colitis. MSCs were exposed to different concentrations of H2O2, and the optimal H2O2 pretreatment conditions were determined by evaluating their critical cell functional properties. H2O2-pretreated MSC-CM was transplanted into experimental mouse colitis by enema at 2, 4, and 6 days in modeling, and the changes of colonic tissue structure, the levels of inflammation and oxidative stress, the molecular changes of Nrf2/Keap1/ARE axis, and the related indicators of apoptosis in colonic epithelial cells were observed in each group. In vitro, Pretreated MSCs with 25 μM H2O2 significantly enhanced cell proliferation, migration, and survival, but had no effect on apoptosis. In vivo, MSC-CM treatment decreased apoptosis and extracellular matrix deposition, and maintained the mechanical barrier and permeability of colonic epithelial cells in experimental mouse colitis. Mechanistically, H2O2-pretreated MSC-CM against reactive oxygen species (ROS) production and MDA generation, accompanied by increases in components of the enzymatic antioxidant system includes SOD, CAT, GSH-PX, and T-AOC, which is through the up-regulation of the Nrf2, HO-1, and NQO-1 antioxidant genes. Our data confirmed that 25 μM H2O2 pretreated MSC-CM treatment could effectively improve intestinal mucosal repair in experimental colitis, which may be achieved by activating Nrf2/Keap1/ARE pathway.

Funder

Independent Exploration and Innovation project for postgraduate of Central South University

Changsha Municipal Natural Science Foundation

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3