Gradient-based autonomous obstacle avoidance trajectory planning for B-spline UAVs

Author:

Sun Wei,Sun Pengxiang,Ding Wei,Zhao Jingang,Li Yadan

Abstract

AbstractUnmanned aerial vehicles (UAVs) have become the focus of current research because of their practicability in various scenarios. However, current local path planning methods often result in trajectories with numerous sharp or inflection points, which are not ideal for smooth UAV flight. This paper introduces a UAV path planning approach based on distance gradients. The key improvements include generating collision-free paths using collision information from initial trajectories and obstacles. Then, collision-free paths are subsequently optimized using distance gradient information. Additionally, a trajectory time adjustment method is proposed to ensure the feasibility and safety of the trajectory while prioritizing smoothness. The Limited-memory BFGS algorithm is employed to efficiently solve optimal local paths, with the ability to quickly restart the trajectory optimization program. The effectiveness of the proposed method is validated in the Robot Operating System simulation environment, demonstrating its ability to meet trajectory planning requirements for UAVs in complex unknown environments with high dynamics. Moreover, it surpasses traditional UAV trajectory planning methods in terms of solution speed, trajectory length, and data volume.

Funder

Liaoning Province Applied Basic Research Program

the Discipline Innovation Team of Liaoning University of Engineering and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3