Predicting ineffective thrombolysis in acute ischemic stroke with clinical and biochemical markers

Author:

Li Yinglei,Li Ning,Zhou Yuanyuan,Li Litao

Abstract

Abstract**Ischemic stroke remains a leading cause of morbidity and mortality globally. Despite the advances in thrombolytic therapy, notably recombinant tissue plasminogen activator (rtPA), patient outcomes are highly variable. This study aims to introduce a novel predictive model, the Acute Stroke Thrombolysis Non-Responder Prediction Model (ASTN-RPM), to identify patients unlikely to benefit from rtPA within the critical early recovery window. We conducted a retrospective cohort study at Baoding No.1 Central Hospital including 709 adult patients diagnosed with acute ischemic stroke and treated with intravenous alteplase within the therapeutic time window. The ASTN-RPM was developed using Least Absolute Shrinkage and Selection Operator (LASSO) regression technique, incorporating a wide range of biomarkers and clinical parameters. Model performance was evaluated using Receiver Operating Characteristic (ROC) curves, calibration plots, and Decision Curve Analysis (DCA). ASTN-RPM effectively identified patients at high risk of poor response to thrombolysis, with an AUC of 0.909 in the training set and 0.872 in the validation set, indicating high sensitivity and specificity. Key predictors included posterior circulation stroke, high admission NIHSS scores, extended door to needle time, and certain laboratory parameters like homocysteine levels. The ASTN-RPM stands as a potential tool for refining clinical decision-making in ischemic stroke management. By anticipating thrombolytic non-response, clinicians can personalize treatment strategies, possibly improving patient outcomes and reducing the burden of ineffective interventions. Future studies are needed for external validation and to explore the incorporation of emerging biomarkers and imaging data.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3