Deep learning detection of nanoparticles and multiple object tracking of their dynamic evolution during in situ ETEM studies

Author:

Faraz Khuram,Grenier Thomas,Ducottet Christophe,Epicier Thierry

Abstract

AbstractIn situ transmission electron microscopy (TEM) studies of dynamic events produce large quantities of data especially under the form of images. In the important case of heterogeneous catalysis, environmental TEM (ETEM) under gas and temperature allows to follow a large population of supported nanoparticles (NPs) evolving under reactive conditions. Interpreting properly large image sequences gives precious information on the catalytic properties of the active phase by identifying causes for its deactivation. To perform a quantitative, objective and robust treatment, we propose an automatic procedure to track nanoparticles observed in Scanning ETEM (STEM in ETEM). Our approach involves deep learning and computer vision developments in multiple object tracking. At first, a registration step corrects the image displacements and misalignment inherent to the in situ acquisition. Then, a deep learning approach detects the nanoparticles on all frames of video sequences. Finally, an iterative tracking algorithm reconstructs their trajectories. This treatment allows to deduce quantitative and statistical features about their evolution or motion, such as a Brownian behavior and merging or crossing events. We treat the case of in situ calcination of palladium (oxide) / delta-alumina, where the present approach allows a discussion of operating processes such as Ostwald ripening or NP aggregative coalescence.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3