Microalgae-blend tilapia feed eliminates fishmeal and fish oil, improves growth, and is cost viable

Author:

Sarker Pallab K.,Kapuscinski Anne R.,McKuin Brandi,Fitzgerald Devin S.,Nash Hannah M.,Greenwood Connor

Abstract

AbstractAquafeed manufacturers have reduced, but not fully eliminated, fishmeal and fish oil and are seeking cost competitive replacements. We combined two commercially available microalgae, to produce a high-performing fish-free feed for Nile tilapia (Oreochromis niloticus)—the world’s second largest group of farmed fish. We substituted protein-rich defatted biomass of Nannochloropsis oculata (leftover after oil extraction for nutraceuticals) for fishmeal and whole cells of docosahexaenoic acid (DHA)-rich Schizochytrium sp. as substitute for fish oil. We found significantly better (p < 0.05) growth, weight gain, specific growth rate, and best (but not significantly different) feed conversion ratio using the fish-free feed compared with the reference diet. Fish-free feed also yielded higher (p < 0.05) fillet lipid, DHA, and protein content (but not significantly different). Furthermore, fish-free feed had the highest degree of in-vitro protein hydrolysis and protein digestibility. The median economic conversion ratio of the fish-free feed ($0.95/kg tilapia) was less than the reference diet ($1.03/kg tilapia), though the median feed cost ($0.68/kg feed) was slightly greater than that of the reference feed ($0.64/kg feed) (p < 0.05). Our work is a step toward eliminating reliance on fishmeal and fish oil with evidence of a cost-competitive microalgae-based tilapia feed that improves growth metrics and the nutritional quality of farmed fish.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference76 articles.

1. FAO. The State of World Fisheries and Aquaculture 2018: Meeting the Sustainable Development Goals. (Food and Agriculture Organization (FAO) of the United Nations, 2018).

2. FAO. The State of World Fisheries and Aquaculture 2016: Contributing to Food Security and Nutrition for All. (Food and Agriculture Organization (FAO) of the United Nations, 2016).

3. Global Market Insights. Aquafeed Market Size by Application (Carp, Mollusks, Salmon, Crustaceans, Tilapia, Catfish) & Aquaculture Additives Market Size by Product (Amino Acids, Antibiotics, Vitamins, Feed Acidifiers), Competitive Analysis & Forecast, 2012–2022. 102 (2016).

4. Ekmekci, H. & Gül, M. Economic structure and problems of trout enterprises: A case of fethiye. Turk. J. Agric. Food Sci. Technol. 5, 33–42 (2017).

5. Arru, B., Furesi, R., Gasco, L., Madau, F. & Pulina, P. The introduction of insect meal into fish diet: The first economic analysis on european sea bass farming. Sustainability 11, 1697 (2019).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3