Astrocytes in the adult dentate gyrus—balance between adult and developmental tasks

Author:

Chalmers Nicholas,Masouti Evangelia,Beckervordersandforth RuthORCID

Abstract

AbstractAstrocytes, a major glial cell type in the brain, are indispensable for the integration, maintenance and survival of neurons during development and adulthood. Both life phases make specific demands on the molecular and physiological properties of astrocytes, and most research projects traditionally focus on either developmental or adult astrocyte functions. In most brain regions, the generation of brain cells and the establishment of neural circuits ends with postnatal development. However, few neurogenic niches exist in the adult brain in which new neurons and glial cells are produced lifelong, and the integration of new cells into functional circuits represent a very special form of plasticity. Consequently, in the neurogenic niche, the astrocytes must be equipped to execute both mature and developmental tasks in order to integrate newborn neurons into the circuit and yet maintain overall homeostasis without affecting the preexisting neurons. In this review, we focus on astrocytes of the hippocampal dentate gyrus (DG), and discuss specific features of the astrocytic compartment that may allow the execution of both tasks. Firstly, astrocytes of the adult DG are molecularly, morphologically and functionally diverse, and the distinct astrocytes subtypes are characterized by their localization to DG layers. This spatial separation may lead to a functional specification of astrocytes subtypes according to the neuronal structures they are embedded in, hence a division of labor. Secondly, the astrocytic compartment is not static, but steadily increasing in numbers due to lifelong astrogenesis. Interestingly, astrogenesis can adapt to environmental and behavioral stimuli, revealing an unexpected astrocyte dynamic that allows the niche to adopt to changing demands. The diversity and dynamic of astrocytes in the adult DG implicate a vital contribution to hippocampal plasticity and represent an interesting model to uncover mechanisms how astrocytes simultaneously fulfill developmental and adult tasks.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Psychiatry and Mental health,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3