Automated all-functionals infrared and Raman spectra

Author:

Bastonero LorenzoORCID,Marzari NicolaORCID

Abstract

AbstractInfrared and Raman spectroscopies are ubiquitous techniques employed in many experimental laboratories, thanks to their fast and non-destructive nature able to capture materials’ features as spectroscopic fingerprints. Nevertheless, these measurements frequently need theoretical and computational support in order to unambiguously decipher and assign complex spectra. Linear-response theory provides an effective way to obtain the higher-order derivatives needed, but its applicability to modern exchange-correlation functionals and pseudopotential formalism remains limited. Here, we devise an automated, open-source, user-friendly approach based on density-functional theory and the electric-enthalpy functional to allow seamless calculation from first principles of infrared absorption and reflectivity, together with zone-center phonons, static dielectric tensor, and Raman spectra. By employing a finite-displacement and finite-field approach, we allow for the use of any functional, as well as an efficient treatment of large low-symmetry structures. Additionally, we propose a simple scheme for efficiently sampling the Brillouin zone at different electric fields. To demonstrate the capabilities of the present approach, we study ferroelectric LiNbO3 crystal as a paradigmatic example, and predict infrared and Raman spectra using various (semi)local, Hubbard corrected, and hybrid functionals. Our results also show how PBE0 and extended Hubbard functionals (PBEsol+U+V) yield for this case the best match in term of peak positions and intensities, respectively.

Funder

Deutsche Forschungsgemeinschaft

Swiss National Science Foundation | National Center of Competence in Research Quantum Science and Technology

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3