Abstract
AbstractThe coronavirus (COVID-19) pandemic, caused by severe acute respiratory system coronavirus 2 (SARS-CoV-2), has created significant challenges for scientists seeking to understand the pathogenic mechanisms of SARS-CoV-2 infection and to identify the best therapies for infected patients. Although ACE2 is a known receptor for the virus and has been shown to mediate viral entry into the lungs, accumulating reports highlight the presence of neurological symptoms resulting from infection. As ACE2 expression is low in the central nervous system (CNS), these neurological symptoms are unlikely to be caused by ACE2-virus binding. In this review, we will discuss a proposed interaction between SARS-CoV-2 and Toll-like receptor 2 (TLR2) in the CNS. TLR2 is an innate immune receptor that recognizes exogenous microbial components but has also been shown to interact with multiple viral components, including the envelope (E) protein of SARS-CoV-2. In addition, TLR2 plays an important role in the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Based on these observations, we hypothesize that TLR2 may play a critical role in the response to SARS-CoV-2 infiltration in the CNS, thereby resulting in the induction or acceleration of AD and PD pathologies in patients.
Publisher
Springer Science and Business Media LLC
Subject
Clinical Biochemistry,Molecular Biology,Molecular Medicine,Biochemistry
Reference118 articles.
1. World Health Organization WHO Coronavirus Dashboard, https://covid19.who.int (2021).
2. Centers for Disease Control and Prevention COVID-19, https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html (2021).
3. Seyed Hosseini, E. et al. The novel coronavirus Disease-2019 (COVID-19): mechanism of action, detection and recent therapeutic strategies. Virology 551, 1–9 (2020).
4. Wong, S. K., Li, W., Moore, M. J., Choe, H. & Farzan, M. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J. Biol. Chem. 279, 3197–3201 (2004).
5. Tufan, A., Avanoglu Guler, A. & Matucci-Cerinic, M. COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. Turk. J. Med. Sci. 50, 620–632 (2020).
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献