RNA binding protein NKAP protects glioblastoma cells from ferroptosis by promoting SLC7A11 mRNA splicing in an m6A-dependent manner

Author:

Sun ShichengORCID,Gao Taihong,Pang Bo,Su Xiangsheng,Guo Changfa,Zhang RuiORCID,Pang QiORCID

Abstract

AbstractFerroptosis is a form of cell death characterized by lipid peroxidation. Previous studies have reported that knockout of NF-κB activating protein (NKAP), an RNA-binding protein, increased lipid peroxidation level in naive T cells and induced cell death in colon cancer cells. However, there was no literature reported the relationship between NKAP and ferroptosis in glioblastoma cells. Notably, the mechanism of NKAP modulating ferroptosis is still unknown. Here, we found NKAP knockdown induced cell death in glioblastoma cells. Silencing NKAP increased the cell sensitivity to ferroptosis inducers both in vitro and in vivo. Exogenous overexpression of NKAP promoted cell resistance to ferroptosis inducers by positively regulating a ferroptosis defense protein, namely cystine/glutamate antiporter (SLC7A11). The regulation of SLC7A11 by NKAP can be weakened by the m6A methylation inhibitor cycloleucine and knockdown of the m6A writer METTL3. NKAP combined the “RGAC” motif which was exactly in line with the m6A motif “RGACH” (R = A/G, H = A/U/C) uncovered by the m6A-sequence. RNA Immunoprecipitation (RIP) and Co-Immunoprecipitation (Co-IP) proved the interaction between NKAP and m6A on SLC7A11 transcript. Following its binding to m6A, NKAP recruited the splicing factor proline and glutamine-rich (SFPQ) to recognize the splice site and then conducted transcription termination site (TTS) splicing event on SLC7A11 transcript and the retention of the last exon, screened by RNA-sequence and Mass Spectrometry (MS). In conclusion, NKAP acted as a new ferroptosis suppressor by binding to m6A and then promoting SLC7A11 mRNA splicing and maturation.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3