Endothelial ETS1 inhibition exacerbate blood–brain barrier dysfunction in multiple sclerosis through inducing endothelial-to-mesenchymal transition

Author:

Luo YanORCID,Yang Hang,Wan Yan,Yang Sibo,Wu Jiehong,Chen Shengcai,Li Yanan,Jin Huijuan,He Quanwei,Zhu Dong-Ya,Zhou YifanORCID,Hu BoORCID

Abstract

AbstractBlood–brain barrier (BBB) dysfunction has been recognized as an early pathological feature and contributing factor in multiple sclerosis. Endothelial-to-mesenchymal transition is a process associated with endothelial dysfunction leading to the disruption of vessel stability and barrier function, yet its functional consequence in multiple sclerosis remains unclear. Here, we demonstrated that endothelial-to-mesenchymal transition accompanied the blood–brain barrier dysfunction in several neurological disorders, especially in multiple sclerosis. The activity of transcription factor ETS1, which is highly expressed in endothelial cells (ECs) and responded to an inflammatory condition, is suppressed in the central nervous system (CNS) ECs in MS and its animal model experimental autoimmune encephalomyelitis. We identify ETS1 as a central regulator of endothelial-to-mesenchymal transition (EndMT) associated with the compromise of barrier integrity. These phenotypical and functional alterations can further induce high permeability, immune infiltration, and organ fibrosis in multiple sclerosis, thus promoting disease progression. Together, these results demonstrate a functional role of EndMT in blood–brain barrier dysfunction and propose ETS1 as a potential transcriptional switch of EndMT to target the development of multiple sclerosis.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3