From tuberculosis bedside to bench: UBE2B splicing as a potential biomarker and its regulatory mechanism

Author:

Lyu Mengyuan,Zhou Jian,Zhou Yanbing,Chong Weelic,Xu Wei,Lai Hongli,Niu Lu,Hai Yang,Yao Xiaojun,Gong Sheng,Wang Qinglan,Chen Yi,Wang Yili,Chen Liyu,Zengwanggema ,Zeng Jiongjiong,Wang ChengdiORCID,Ying Binwu

Abstract

AbstractAlternative splicing (AS) is an important approach for pathogens and hosts to remodel transcriptome. However, tuberculosis (TB)-related AS has not been sufficiently explored. Here we presented the first landscape of TB-related AS by long-read sequencing, and screened four AS events (S100A8-intron1-retention intron, RPS20-exon1-alternaitve promoter, KIF13B-exon4-skipping exon (SE) and UBE2B-exon7-SE) as potential biomarkers in an in-house cohort-1. The validations in an in-house cohort-2 (2274 samples) and public datasets (1557 samples) indicated that the latter three AS events are potential promising biomarkers for TB diagnosis, but not for TB progression and prognosis. The excellent performance of classifiers further underscored the diagnostic value of these three biomarkers. Subgroup analyses indicated that UBE2B-exon7-SE splicing was not affected by confounding factors and thus had relatively stable performance. The splicing of UBE2B-exon7-SE can be changed by heat-killed mycobacterium tuberculosis through inhibiting SRSF1 expression. After heat-killed mycobacterium tuberculosis stimulation, 231 ubiquitination proteins in macrophages were differentially expressed, and most of them are apoptosis-related proteins. Taken together, we depicted a global TB-associated splicing profile, developed TB-related AS biomarkers, demonstrated an optimal application scope of target biomarkers and preliminarily elucidated mycobacterium tuberculosis-host interaction from the perspective of splicing, offering a novel insight into the pathophysiology of TB.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3