Unraveling the intricate connection between dietary factors and the success in long-term space missions

Author:

Pittia PaolaORCID,Blanc Stéphane,Heer MartinaORCID

Abstract

AbstractIn recent decades of spaceflight, inadequate caloric intake has posed significant nutritional challenges, contributing to muscle degradation, weakened immune and cardiovascular systems during and after space missions. This challenge becomes more acute on longer exploration missions, where transporting all food for the entire mission becomes a logistical challenge. This places immense pressure on the food system, requiring energy-dense, varied, stable, and palatable food options. Prolonged storage can lead to nutrient degradation, reducing their bioavailability and bioaccessibility to astronauts. Research is essential not only to improve the quality and stability of space food but also to enhance nutrient bioavailability, thereby reducing weight and volume of food. Muscle and bone loss represent major risks during extended spaceflight, prompting extensive efforts to find exercise countermeasures. However, increased exercise requires additional energy intake, and finding the optimal balance between energy needs and the preservation of muscle and bone mass is challenging. Currently, there is no reliable way to measure total energy expenditure and activity-related energy expenditures in real-time. Systematic research is necessary to develop onboard technology for accurate energy expenditure and body composition monitoring. This research should aim to establish an optimal exercise regimen that balances energy requirements while maintaining astronaut strength and minimizing food transport. In summary, this overview outlines key actions needed for future exploration missions to maintain body mass and physical strength of space travellers. It addresses the requirements for food processing and preservation, considerations for space food formulation and production, and the essential measures to be implemented.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Physics and Astronomy (miscellaneous),Agricultural and Biological Sciences (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous),Materials Science (miscellaneous),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3