An optimization framework to guide the choice of thresholds for risk-based cancer screening

Author:

Brentnall Adam R.ORCID,Atakpa Emma C.,Hill HarryORCID,Santeramo RuggieroORCID,Damiani CelesteORCID,Cuzick Jack,Montana GiovanniORCID,Duffy Stephen W.

Abstract

AbstractIt is uncommon for risk groups defined by statistical or artificial intelligence (AI) models to be chosen by jointly considering model performance and potential interventions available. We develop a framework to rapidly guide choice of risk groups in this manner, and apply it to guide breast cancer screening intervals using an AI model. Linear programming is used to define risk groups that minimize expected advanced cancer incidence subject to resource constraints. In the application risk stratification performance is estimated from a case–control study (2044 cases, 1:1 matching), and other parameters are taken from screening trials and the screening programme in England. Under the model, re-screening in 1 year for the highest 4% AI model risk, in 3 years for the middle 64%, and in 4 years for 32% of the population at lowest risk, was expected to reduce the number of advanced cancers diagnosed by approximately 18 advanced cancers per 1000 diagnosed with triennial screening, for the same average number of screens in the population as triennial screening for all. Sensitivity analyses found the choice of thresholds was robust to model parameters, but the estimated reduction in advanced cancers was not precise and requires further evaluation. Our framework helps define thresholds with the greatest chance of success for reducing the population health burden of cancer when used in risk-adapted screening, which should be further evaluated such as in health-economic modelling based on computer simulation models, and real-world evaluations.

Funder

Breast Cancer Now

DH | NIHR | Health Services Research Programme

Cancer Research UK

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3