Are better AI algorithms for breast cancer detection also better at predicting risk? A paired case–control study

Author:

Santeramo Ruggiero,Damiani Celeste,Wei Jiefei,Montana Giovanni,Brentnall Adam R.

Abstract

Abstract Background There is increasing evidence that artificial intelligence (AI) breast cancer risk evaluation tools using digital mammograms are highly informative for 1–6 years following a negative screening examination. We hypothesized that algorithms that have previously been shown to work well for cancer detection will also work well for risk assessment and that performance of algorithms for detection and risk assessment is correlated. Methods To evaluate our hypothesis, we designed a case-control study using paired mammograms at diagnosis and at the previous screening visit. The study included n = 3386 women from the OPTIMAM registry, that includes mammograms from women diagnosed with breast cancer in the English breast screening program 2010–2019. Cases were diagnosed with invasive breast cancer or ductal carcinoma in situ at screening and were selected if they had a mammogram available at the screening examination that led to detection, and a paired mammogram at their previous screening visit 3y prior to detection when no cancer was detected. Controls without cancer were matched 1:1 to cases based on age (year), screening site, and mammography machine type. Risk assessment was conducted using a deep-learning model designed for breast cancer risk assessment (Mirai), and three open-source deep-learning algorithms designed for breast cancer detection. Discrimination was assessed using a matched area under the curve (AUC) statistic. Results Overall performance using the paired mammograms followed the same order by algorithm for risk assessment (AUC range 0.59–0.67) and detection (AUC 0.81–0.89), with Mirai performing best for both. There was also a correlation in performance for risk and detection within algorithms by cancer size, with much greater accuracy for large cancers (30 mm+, detection AUC: 0.88–0.92; risk AUC: 0.64–0.74) than smaller cancers (0 to < 10 mm, detection AUC: 0.73–0.86, risk AUC: 0.54–0.64). Mirai was relatively strong for risk assessment of smaller cancers (0 to < 10 mm, risk, Mirai AUC: 0.64 (95% CI 0.57 to 0.70); other algorithms AUC 0.54–0.56). Conclusions Improvements in risk assessment could stem from enhancing cancer detection capabilities of smaller cancers. Other state-of-the-art AI detection algorithms with high performance for smaller cancers might achieve relatively high performance for risk assessment.

Funder

Cancer Research UK

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3