In silico modelling of the effect of pyloric intervention procedures on gastric flow and emptying in a stomach with gastroparesis

Author:

Kuhar Sharun1ORCID,Seo Jung-Hee1ORCID,Pasricha Pankaj J2,Mittal Rajat13ORCID

Affiliation:

1. Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA

2. Mayo Clinic, Phoenix, AZ 85054, USA

3. Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA

Abstract

Pyloric interventions are surgical procedures employed to increase the gastric emptying rate in gastroparesis patients. In this study, we use an in silico model to investigate the consequences of pyloric intervention on gastric flow and emptying for two phenotypes of gastroparesis: antral hypomotility and decreased gastric tone. The transpyloric pressure gradient predicted by the in silico model, based on viscous fluid flow equations, is compared against in vivo measurements. Both phenotypes exhibit a similar pre-procedural emptying rate reduction, but after pyloric surgery, antral hypomotility case with preserved gastric tone shows significant improvements in emptying rates, up to 131%, accompanied by bile reflux from the duodenum into the stomach. Conversely, severely reduced gastric tone cases exhibited a post-procedural reduction in the net emptying rate due to the relatively larger bile reflux. In cases with a combination of antral hypomotility and reduced gastric tone, post-procedural improvements were observed only when both conditions were mild. Our findings highlight the pivotal role of the relative increase in pyloric orifice diameter in determining post-operative emptying rates. The study suggests a possible explanation for the selective response of patients toward these procedures and underscores the potential of in silico modelling to generate valuable insights to inform gastric surgery.

Funder

Division of Chemical, Bioengineering, Environmental, and Transport Systems

National Institute of General Medical Sciences

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3