Interaction of gallium, indium and vanadyl diacetylcurcumin complexes with lysozyme: mechanistic aspects and evaluation of antiamyloidogenic activity

Author:

Sahraei Amin1ORCID,Ehsanfar Ahmad1,Mohammadi Fakhrossadat1ORCID

Affiliation:

1. Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Boulevard, Gava Zang, Zanjan 45137-66731, Iran

Abstract

Diacetylcurcumin as a derivative of curcumin is a strong nitric oxide (NO) and O 2 −. anion scavenger. One strategy to improve stability of curcumin and its derivatives is complexation with metal. In this study, the binding interactions of gallium diacetylcurcumin (Ga(DAC) 3 ), indium diacetylcurcumin (In(DAC) 3 ), and vanadyl diacetylcurcumin (VO(DAC) 2 ) with hen egg white lysozyme (HEWL) have been investigated. The results of fluorescence quenching analyses revealed that In(DAC) 3 and VO(DAC) 2 have higher binding affinities than Ga(DAC) 3 towards HEWL. The interactions of these metal complexes were not accompanied by considerable conformational changes in the tertiary structure of HEWL. Furthermore, the inhibitory effects of these complexes on the amyloid fibrillation of HEWL were confirmed by the thioflavin T fluorescence assays. The kinetic curves of the fibrillation process illustrated that VO(DAC) 2 has the highest inhibitory activity and In(DAC) 3 has a significant delaying effect on the formation of amyloid fibrils of HEWL.

Funder

Institute for Advanced Studies in Basic Sciences

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3