Author:
Makhatha Mamookho E.,Sinha Ray Suprakas,Hato Joseph,Luyt Adriaan S.
Abstract
This article describes the thermal and thermomechanical properties of poly(butylene succinate) (PBS) and its nanocomposites. PBS nanocomposites with three different weight ratios of organically modified synthetic fluorine mica (OMSFM) have been prepared by melt-mixing in a batch mixer
at 140 °C. The structure and morphology of the nanocomposites were characterized by X-ray diffraction (XRD) analyses and transmission electron microscopy (TEM) observations that reveal the homogeneous dispersion of the intercalated silicate layers into the PBS matrix. The thermal properties
of pure PBS and the nanocomposite samples were studied by both conventional and temperature modulated differential scanning calorimetry (DSC) analyses, which show multiple melting behavior of the PBS matrix. The investigation of the thermomechanical properties was performed by dynamic mechanical
analysis. Results reveal significant improvement in the storage modulus of neat PBS upon addition of OMSFM. The tensile modulus of neat PBS is also increased substantially with the addition of OMSFM, however, the strength at yield and elongation at break of neat PBS systematically decreases
with the loading of OMSFM. The thermal stability of the nanocomposites compared to that of the pure polymer sample was examined under both pyrolytic and thermooxidative environments. It is shown that the thermal stability of PBS is increased moderately in the presence of 3 wt% of OMSFM, but
there is no significant effect on further silicate loading in the oxidative environment. In the nitrogen environment, however, the thermal stability systematically decreases with increasing clay loading.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献