Annealing improves the mechanical properties in poly(butylene succinate) films with oriented lamellar structure: The effect of metastable lamellae

Author:

Xie Jiayi12ORCID,Xu Ruijie2,Hwang JiunnJye1,Zhu Haixia3,Zhang Ting1,Lei Caihong2

Affiliation:

1. School of Chemistry and Civil Engineering Shaoguan University Shaoguan P. R. China

2. School of Materials and Energy Guangdong University of Technology Guangzhou P. R. China

3. Guangdong Provincial Key Laboratory of Utilization and Con Servation of Food and Medicinal Resources in Northern Region Shaoguan University Shaoguan P. R. China

Abstract

AbstractThe application range of biodegradable Poly(butylene succinate) (PBS) is highly dependent on its mechanical properties, which can be improved by the annealing process. In this study, the mechanical properties and microstructure of PBS films with oriented lamellar structures annealed at different temperatures were characterized. It was found that the annealing process effectively improves the elastic modulus and yield strength of the oriented PBS film with the increase of annealing temperature, which is completely different from the previous results of other oriented semicrystalline polymers such as PP, PMP, PE, and PVDF. The long periods, lateral dimensions and orientation of the lamellae of the oriented PBS film increase with the increasing annealing temperature. Meanwhile, the low‐temperature endothermic plateau in the DSC curve and the g1,r/Q in the SAXS experiment decrease with annealing temperature, indicating that increasing annealing temperature would reduce the thin and metastable lamellae in the PBS films. Compared the annealing results of oriented PBS films and that of other‐oriented semicrystalline polymers, we suggested the annealing process for the oriented PBS films would reduce the thin lamellae and form thicker lamellae, resulting in an increase in the elastic modulus and yield strength of the annealed PBS films. This study clarifies how the annealing temperature affects the microstructure and mechanical properties of the oriented semicrystalline films.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3