Predicting omicron pneumonia severity and outcome: a single-center study in Hangzhou, China

Author:

Xu Jingjing,Cao Zhengye,Miao Chunqin,Zhang Minming,Xu Xiaojun

Abstract

BackgroundIn December 2022, there was a large Omicron epidemic in Hangzhou, China. Many people were diagnosed with Omicron pneumonia with variable symptom severity and outcome. Computed tomography (CT) imaging has been proven to be an important tool for COVID-19 pneumonia screening and quantification. We hypothesized that CT-based machine learning algorithms can predict disease severity and outcome in Omicron pneumonia, and we compared its performance with the pneumonia severity index (PSI)-related clinical and biological features.MethodsOur study included 238 patients with the Omicron variant who have been admitted to our hospital in China from 15 December 2022 to 16 January 2023 (the first wave after the dynamic zero-COVID strategy stopped). All patients had a positive real-time polymerase chain reaction (PCR) or lateral flow antigen test for SARS-CoV-2 after vaccination and no previous SARS-CoV-2 infections. We recorded patient baseline information pertaining to demographics, comorbid conditions, vital signs, and available laboratory data. All CT images were processed with a commercial artificial intelligence (AI) algorithm to obtain the volume and percentage of consolidation and infiltration related to Omicron pneumonia. The support vector machine (SVM) model was used to predict the disease severity and outcome.ResultsThe receiver operating characteristic (ROC) area under the curve (AUC) of the machine learning classifier using PSI-related features was 0.85 (accuracy = 87.40%, p < 0.001) for predicting severity while that using CT-based features was only 0.70 (accuracy = 76.47%, p = 0.014). If combined, the AUC was not increased, showing 0.84 (accuracy = 84.03%, p < 0.001). Trained on outcome prediction, the classifier reached the AUC of 0.85 using PSI-related features (accuracy = 85.29%, p < 0.001), which was higher than using CT-based features (AUC = 0.67, accuracy = 75.21%, p < 0.001). If combined, the integrated model showed a slightly higher AUC of 0.86 (accuracy = 86.13%, p < 0.001). Oxygen saturation, IL-6, and CT infiltration showed great importance in both predicting severity and outcome.ConclusionOur study provided a comprehensive analysis and comparison between baseline chest CT and clinical assessment in disease severity and outcome prediction in Omicron pneumonia. The predictive model accurately predicts the severity and outcome of Omicron infection. Oxygen saturation, IL-6, and infiltration in chest CT were found to be important biomarkers. This approach has the potential to provide frontline physicians with an objective tool to manage Omicron patients more effectively in time-sensitive, stressful, and potentially resource-constrained environments.

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3