Evaluating the impact of indoor aerosols on the performance of real-time radon sensors

Author:

Rey Joan F.,Meisser Nicolas,Licina Dusan,Goyette Pernot Joëlle

Abstract

Radon, a naturally occurring radioactive gas, poses a significant health risk by accumulating in buildings and potentially leading to lung cancer. Depending on building construction and geographical location, radon levels can vary substantially both within individual buildings and between different buildings. While previous studies have primarily focused on the impact of temperature and relative humidity on radon devices, the influence of aerosols remains largely unexplored. This paper presents a comprehensive evaluation of the influence of indoor aerosol sources on the performance of real-time radon sensors, encompassing consumer, medium, and research-grade devices. Measurements were performed at relatively low (300 Bq/m3) and high (2′000–3′000 Bq/m3) radon levels in a controlled environment—a stable atomic shelter with constant temperature and humidity conditions. Six different aerosols sources were introduced to produce aerosols of different sizes and concentrations. The results suggest that the tested indoor aerosols did not significantly influence the performance of radon devices, irrespective of their grade or detection method. Consequently, sensor performance and the radon levels being investigated may exert a more significant influence on the obtained results than aerosol levels alone. This paper provides valuable insights into the influence of indoor environment on the performance of radon measuring devices, underscoring the importance of understanding their utility and application scope for researchers, professionals, and the general public alike.

Publisher

Frontiers Media SA

Reference34 articles.

1. AlphaGUARD - user manual2012

2. Radon risk assessment and mitigation deadlines;Bertoni;J. Eur. Radon Assoc,2022

3. A review of indoor and outdoor radon equilibrium factors—Part I: 222Rn;Chen;Health Phys.,2018

4. Performance assessment of low-cost environmental monitors and single sensors under variable indoor air quality and thermal conditions;Demanega;Build. Environ.,2021

5. Ordonnance du DFJP sur les instruments de mesure des rayonnements ionisants (OIMRI). RS 941.210.52012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3