Radon risk assessment and mitigation deadlines

Author:

Bertoni Gianluca,El Hajj Thammiris M.,Gandolla Mauro

Abstract

Background: Radon is a radioactive natural gas that is the leading cause of death from lung cancer in non-smokers. It is responsible for the highest share of the yearly effective doses a person is exposed to, and, in many cases, it is the most important indoor pollutant. National regulations on radon typically use derived reference levels, except for occupationally exposed workers that are monitored using a graded approach (e.g. in Switzerland and EU). However, in some countries, radon concentrations in dwellings or workplaces are high and the effective doses are comparable, and even greater than those measured in occupational workplaces. The times spent in different places and the presence of children or disabled people (that usually spend more time indoor) bring a need for assessing the risks of indoor radon exposure using a graded approach for both dwellings and workplaces. It is essential to highlight that the Covid-19 pandemic made more people work from home, and this new situation may be permanent for some workers. Objective and Design: On this basis, the objectives of this work are to demonstrate the importance of adequate monitoring of natural radioactivity, simulate effective doses due to radon with the new effective dose coefficients (EDCs) proposed by International Commission on Radiological Protection (ICRP) (publication 137), show case studies that illustrate the need for effective dose calculation and propose a method to set radon mitigation deadlines for buildings with high radon activity concentrations. Moreover, this work will shed light in the question about the possible need for new radon reference levels after the new EDCs were proposed. Conclusions: One important outcome of this work is the application of the dose approach in a case study conducted in a dwelling, the measurements and calculations show high annual effective doses (up to 350 mSv/year).

Publisher

European Radon Association

Subject

Immunology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3