Evaluation of low-density SNP panels and imputation for cost-effective genomic selection in four aquaculture species

Author:

Kriaridou Christina,Tsairidou Smaragda,Fraslin Clémence,Gorjanc Gregor,Looseley Mark E.,Johnston Ian A.,Houston Ross D.,Robledo Diego

Abstract

Genomic selection can accelerate genetic progress in aquaculture breeding programmes, particularly for traits measured on siblings of selection candidates. However, it is not widely implemented in most aquaculture species, and remains expensive due to high genotyping costs. Genotype imputation is a promising strategy that can reduce genotyping costs and facilitate the broader uptake of genomic selection in aquaculture breeding programmes. Genotype imputation can predict ungenotyped SNPs in populations genotyped at a low-density (LD), using a reference population genotyped at a high-density (HD). In this study, we used datasets of four aquaculture species (Atlantic salmon, turbot, common carp and Pacific oyster), phenotyped for different traits, to investigate the efficacy of genotype imputation for cost-effective genomic selection. The four datasets had been genotyped at HD, and eight LD panels (300–6,000 SNPs) were generated in silico. SNPs were selected to be: i) evenly distributed according to physical position ii) selected to minimise the linkage disequilibrium between adjacent SNPs or iii) randomly selected. Imputation was performed with three different software packages (AlphaImpute2, FImpute v.3 and findhap v.4). The results revealed that FImpute v.3 was faster and achieved higher imputation accuracies. Imputation accuracy increased with increasing panel density for both SNP selection methods, reaching correlations greater than 0.95 in the three fish species and 0.80 in Pacific oyster. In terms of genomic prediction accuracy, the LD and the imputed panels performed similarly, reaching values very close to the HD panels, except in the pacific oyster dataset, where the LD panel performed better than the imputed panel. In the fish species, when LD panels were used for genomic prediction without imputation, selection of markers based on either physical or genetic distance (instead of randomly) resulted in a high prediction accuracy, whereas imputation achieved near maximal prediction accuracy independently of the LD panel, showing higher reliability. Our results suggests that, in fish species, well-selected LD panels may achieve near maximal genomic selection prediction accuracy, and that the addition of imputation will result in maximal accuracy independently of the LD panel. These strategies represent effective and affordable methods to incorporate genomic selection into most aquaculture settings.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Reference72 articles.

1. Optimal design of low density marker panels for genotype imputation;Aliloo,2018

2. Genomic predictions for fillet yield and firmness in rainbow trout using reduced-density SNP panels;Al-Tobasei;BMC Genomics,2021

3. Basic local alignment search tool;Altschul;J. Mol. Biol.,1990

4. Genetic differences in host infectivity affect disease spread and survival in epidemics;Anacleto;Sci. Rep.,2019

5. A hybrid method for the imputation of genomic data in livestock populations;Antolín;Genet. Sel. Evol.,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3