Genomic prediction in Brassica napus: evaluating the benefit of imputed whole-genome sequencing data

Author:

Weber Sven E.1ORCID,Roscher-Ehrig Lennard1ORCID,Kox Tobias2,Abbadi Amine2ORCID,Stahl Andreas3ORCID,Snowdon Rod J.1ORCID

Affiliation:

1. Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany

2. NPZ Innovation GmbH, Holtsee, Germany

3. Julius Kuehn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany

Abstract

Advances in sequencing technology allow whole plant genomes to be sequenced with high quality. Combining genotypic and phenotypic data in genomic prediction helps breeders to select crossing partners in partially phenotyped populations. In plant breeding programs, the cost of sequencing entire breeding populations still exceeds available genotyping budgets. Hence, the method for genotyping is still mainly single nucleotide polymorphism (SNP) arrays; however, arrays are unable to assess the entire genome- and population-wide diversity. A compromise involves genotyping the entire population using an SNP array and a subset of the population with whole-genome sequencing. Both datasets can then be used to impute markers from whole-genome sequencing onto the entire population. Here, we evaluate whether imputation of whole-genome sequencing data enhances genomic predictions, using data from a nested association mapping population of rapeseed ( Brassica napus). Employing two cross-validation schemes that mimic scenarios for the prediction of close and distant relatives, we show that imputed marker data do not significantly improve prediction accuracy, likely due to redundancy in relationship estimates and imputation errors. In simulation studies, only small improvements were observed, further corroborating the findings. We conclude that SNP arrays are already equipped with the information that is added by imputation through relationship and linkage disequilibrium.

Funder

German Network for Bioinformatics

Federal Ministry of Education and Research

Publisher

Canadian Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3