Anatomical Predictors of Valve Malposition During Self-Expandable Transcatheter Aortic Valve Replacement

Author:

Li Jie,Sun Yinghao,Zheng Shengneng,Li Guang,Dong Haojian,Fu Ming,Mo Yujing,Li Yi,Liu Huadong,Xu Zhaoyan,Zhang Liting,Cao Yong,Fan Ruixin,Lim D. Scott,Luo Jianfang

Abstract

Background: The consequence of valve malposition (VM) during transcatheter aortic valve replacement (TAVR) can be severe, but the determinants of VM with self-expandable TAVR have not been thoroughly evaluated. We aimed to investigate the anatomical predictors of VM during self-expandable TAVR.Methods: In this multicenter retrospective study, TAVR was performed using the Venus A-Valve. The baseline, computed tomography, and procedural characteristics along with clinical outcomes were collected. Multivariate logistic regression model and receiver operating characteristic (ROC) curve analyses were performed.Results: A total of 84 consecutive patients (23 with VM) were included. Stepwise regression showed that annulus perimeter/left ventricular outflow tract perimeter (AL ratio) and sinotubular junction (STJ) height were predictors of VM. The ROC curve indicated a moderate strength of AL ratio [area under the curve (AUC) 0.71, cutoff 0.96] and a weak strength of STJ height (AUC 0.69, cutoff 23.8 mm) to predict VM. The combination of both predictors revealed a higher predictive value of VM (AUC 0.77). In multivariate analysis, AL ratio <0.96 [odds ratio (OR) 3.98, p = 0.015] and STJ height ≥23.8 mm (OR 4.63, p = 0.008) were strong independent predictors of VM. The presence of both predictors was associated with a very high risk of VM (OR 10.67, p = 0.002). The rate of moderate-to-severe paravalvular regurgitation was higher in patients with VM at 30 days (26.1 vs. 4.9%, p = 0.011).Conclusions: A conical left ventricular outflow tract and tall aortic sinuses were strong anatomical predictors of VM during self-expandable TAVR.

Publisher

Frontiers Media SA

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3