Impact of Solid Materials in the Gap Space between Driving Electrodes in a MEMS Tri-Electrode Electrostatic Actuator

Author:

Allameh Mehdi12ORCID,Park Byoungyoul2ORCID,Shafai Cyrus1

Affiliation:

1. Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada

2. Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9, Canada

Abstract

MEMS electrostatic actuators can suffer from a high control voltage and a limited displacement range, which are made more prevalent by the pull-in effect. This study explores a tri-electrode topology to enable a reduction in the control voltage and explores the effect of various solid materials forming the space between the two underlying stationary electrodes. Employing solid dielectric material simplifies fabrication and can reduce the bottom primary electrode’s fixed voltage. Through numerical analysis, different materials were examined to assess their impact. The results indicate that the primary electrode’s fixed voltage can be reduced with an increase in the dielectric constant, however, with the consequence of reduced benefit to control voltage reduction. Additionally, charge analysis was conducted to compare the actuator’s performance using air as the gap-spacing material versus solid materials, from the perspective of energy conservation. It was found that solid materials result in a higher accumulated charge, reducing the need for a high fixed voltage.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3