A Multi-Feature Fusion Based on Transfer Learning for Chicken Embryo Eggs Classification

Author:

Huang LvwenORCID,He Along,Zhai Mengqun,Wang Yuxi,Bai Ruige,Nie Xiaolin

Abstract

The fertility detection of Specific Pathogen Free (SPF) chicken embryo eggs in vaccine preparation is a challenging task due to the high similarity among six kinds of hatching embryos (weak, hemolytic, crack, infected, infertile, and fertile). This paper firstly analyzes two classification difficulties of feature similarity with subtle variations on six kinds of five- to seven-day embryos, and proposes a novel multi-feature fusion based on Deep Convolutional Neural Network (DCNN) architecture in a small dataset. To avoid overfitting, data augmentation is employed to generate enough training images after the Region of Interest (ROI) of original images are cropped. Then, all the augmented ROI images are fed into pretrained AlexNet and GoogLeNet to learn the discriminative deep features by transfer learning, respectively. After the local features of Speeded Up Robust Feature (SURF) and Histogram of Oriented Gradient (HOG) are extracted, the multi-feature fusion with deep features and local features is implemented. Finally, the Support Vector Machine (SVM) is trained with the fused features. The verified experiments show that this proposed method achieves an average classification accuracy rate of 98.4%, and that the proposed transfer learning has superior generalization and better classification performance for small-scale agricultural image samples.

Funder

Major Pilot Projects of the Agri-Tech Extension and Service in Shaanxi

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3