Research on Non-destructive Identification of Chick Embryo Gender Based on Deep Learning

Author:

Jiao Xinghui,Wang Ling,Liu Xiaojuan,Zhang Yizhong,Zheng Yihua,Chen Shuo,Shi Shuyang,Ding Pan

Abstract

In the chick hatching industry, a common practice is to directly eliminate male chicks after hatching. However, this practice results in significant resource wastage. Timely detection of embryo gender and selection of male embryos are of great significance for reducing resource wastage and improving economic benefits. To address the serious lack of gender identification technology during chick hatching, this paper proposes a non-destructive identification method for chick embryos based on deep learning. We use the PyTorch framework to build a deep learning model and divide the dataset into 80% training set and 20% validation set for model training and validation. Experimental results show that our proposed model achieves an accuracy of 72.5% on the validation set. This study not only solves key technical problems for non-destructive identification of chick embryo gender but also provides new research ideas for precise gender identification of other oviparous species, promoting the intelligent development of production and breeding industries.

Publisher

STEMM Institute Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3