Graph-Based Deep Learning Model for Forecasting Chloride Concentration in Urban Streams to Protect Salt-Vulnerable Areas

Author:

Oliveira Santos Victor1ORCID,Costa Rocha Paulo Alexandre12ORCID,Thé Jesse Van Griensven13,Gharabaghi Bahram1ORCID

Affiliation:

1. School of Engineering, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada

2. Mechanical Engineering Department, Technology Center, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil

3. Lakes Environmental, 170 Columbia St. W, Waterloo, ON N2L 3L3, Canada

Abstract

In cold-climate regions, road salt is used as a deicer for winter road maintenance. The applied road salt melts ice and snow on roads and can be washed off through storm sewer systems into nearby urban streams, harming the freshwater ecosystem. Therefore, aiming to develop a precise and accurate model to determine future chloride concentration in the Credit River in Ontario, Canada, the present work makes use of a “Graph Neural Network”–“Sample and Aggregate” (GNN-SAGE). The proposed GNN-SAGE is compared to other models, including a Deep Neural Network-based transformer (DNN-Transformer) and a benchmarking persistence model for a 6 h forecasting horizon. The proposed GNN-SAGE surpassed both the benchmarking persistence model and the DNN-Transformer model, achieving RMSE and R2 values of 51.16 ppb and 0.88, respectively. Additionally, a SHAP analysis provides insight into the variables that influence the model’s forecasting, showing the impact of the spatiotemporal neighboring data from the network and the seasonality variables on the model’s result. The GNN-SAGE model shows potential for use in the real-time forecasting of water quality in urban streams, aiding in the development of regulatory policies to protect vulnerable freshwater ecosystems in urban areas.

Funder

Natural Sciences and Engineering Research Council of Canada (NSERC) Alliance

Lakes Environmental Software Inc.

Publisher

MDPI AG

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3