Uncertainty in Environmental Micropollutant Modeling

Author:

Ahkola Heidi,Kotamäki Niina,Siivola Eero,Tiira Jussi,Imoscopi Stefano,Riva Matteo,Tezel Ulas,Juntunen Janne

Abstract

AbstractWater pollution policies have been enacted across the globe to minimize the environmental risks posed by micropollutants (MPs). For regulative institutions to be able to ensure the realization of environmental objectives, they need information on the environmental fate of MPs. Furthermore, there is an urgent need to further improve environmental decision-making, which heavily relies on scientific data. Use of mathematical and computational modeling in environmental permit processes for water construction activities has increased. Uncertainty of input data considers several steps from sampling and analysis to physico-chemical characteristics of MP. Machine learning (ML) methods are an emerging technique in this field. ML techniques might become more crucial for MP modeling as the amount of data is constantly increasing and the emerging new ML approaches and applications are developed. It seems that both modeling strategies, traditional and ML, use quite similar methods to obtain uncertainties. Process based models cannot consider all known and relevant processes, making the comprehensive estimation of uncertainty challenging. Problems in a comprehensive uncertainty analysis within ML approach are even greater. For both approaches generic and common method seems to be more useful in a practice than those emerging from ab initio. The implementation of the modeling results, including uncertainty and the precautionary principle, should be researched more deeply to achieve a reliable estimation of the effect of an action on the chemical and ecological status of an environment without underestimating or overestimating the risk. The prevailing uncertainties need to be identified and acknowledged and if possible, reduced. This paper provides an overview of different aspects that concern the topic of uncertainty in MP modeling.

Funder

CHIST-ERA

Research Council of Finland

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3