Influence of Different Vegetation Types on Soil Physicochemical Parameters and Fungal Communities

Author:

Sui Xin,Zeng Xiannan,Li Mengsha,Weng Xiaohong,Frey Beat,Yang Libin,Li MaiheORCID

Abstract

This study assessed the effects of Betula dahurica (BD), Betula platyphylla (BP), Larix gmelinii (LG), Quercus mongolica (QM), and a mixed conifer–broadleaf forest composed of LG and QM (LGQM) on the soil physicochemical parameters and community structure of fungi in the Zhongyangzhan Black-billed Capercaillie Nature Reserve. Fungal community structures were characterized via ITS rRNA sequencing. The effects of soil parameters on the community structure of soil fungi were assessed by Pearson correlation analysis and redundancy analysis (RDA). LGQM exhibited lower C/N, available nitrogen (AN), total phosphorus (TP), and available phosphorus (AP) compared with the QM broadleaf forest. The fungal Shannon and Simpson diversity indices were highest in BP, whereas LG exhibited the highest ACE index. The Basidiomycota, Ascomycota, Mortierellomycota, and Mucoromycota fungal phyla were dominant across all vegetation types. Each of the different vegetation types studied herein exhibited a unique fungal community structure. The RDA results indicated that fungal community structures were primarily shaped by the total N, available N, and available P of soil. Our findings thus indicated that forests restored with different species of trees may exhibit variations in soil quality and characteristics despite sharing the same climate. Furthermore, broadleaved and coniferous forests exhibited a unique fungal community diversity and composition.

Funder

National Natural Science Foundation of China

Natural Sciences Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3