Response of Soil Fungal-Community Structure to Crop-Tree Thinning in Pinus massoniana Plantation

Author:

Lyu Qian1ORCID,Yang Huiqin1,Yin Biran1,Xiang Yongqi12,Zhao Kuangji12,Hou Guirong12,Chen Gang12,Fan Chuan12ORCID,Li Xianwei12

Affiliation:

1. College of Forestry, Sichuan Agricultural University, Chengdu 611130, China

2. National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu 611130, China

Abstract

To address the ecological challenges arising from pure forest plantations and the wood supply–demand imbalance, implementing sustainable forest management is paramount. Accordingly, we studied crop trees at three densities (100, 150, and 200 N/ha) in a subtropical Pinus massoniana plantation. Our study revealed that the dominant phyla and genera within the fungal community remained largely consistent, with Basidiomycota and Ascomycota occupying prominent positions. Notably, the β diversity of the fungal community exhibited significant changes. Ectomycorrhizal and saprophytic fungi emerged as crucial functional guilds, and crop-tree thinning contributed to increased complexity within the fungal network, with a prevalence of positive rather than negative correlations among genera. The significant roles played by Camphor plants and ferns were evident in the fungal networks. Additionally, under crop-tree thinning, plant diversity experienced a significant boost, fostering interactions with the fungal community. Herb diversity played a vital role in the fungal community, affecting it either directly or indirectly, by altering the content of total phosphorus or organic matter in the soil. This study underscores the relationship between undergrowth plants and soil fungal communities, offering a scientific basis for evaluating the sustainability of restoring inefficient forest-plantation ecosystems.

Funder

Multi-functional Cultivation Technology of P. massoniana Artificial Forest project of the 14th Five-Year Plan National Key R&D Program

Natural Science Foundation of Sichuan Province

Forest Ecosystem Improvement in the Upper Reaches of Yangtze River Basin Program of World Bank

China Scholarship Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3