2-Fucosyllactose Metabolism by Bifidobacteria Promotes Lactobacilli Growth in Co-Culture

Author:

Nogacka Alicja M.12ORCID,Cuesta Isabel1,Gueimonde Miguel12ORCID,de los Reyes-Gavilán Clara G.12ORCID

Affiliation:

1. Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain

2. Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain

Abstract

Breastfeeding is recognized as the gold standard in infant nutrition, not only because of breastmilk’s intrinsic nutritional benefits but also due to the high content of different bioactive components such as 2-fucosyllactose (2′FL) in the mother’s milk. It promotes the growth of its two major consumers, Bifidobacterium longum ssp. infantis and Bifidobacterium bifidum, but the effect on other intestinal microorganisms of infant microbiota remains incompletely understood. pH-uncontrolled fecal cultures from infants donors identified as “fast 2′FL -degrader” microbiota phenotype were used for the isolation of 2′FL-associated microorganisms. The use of specific selective agents allowed the successful isolation of B. bifidum IPLA20048 and of Lactobacillus gasseri IPLA20136. The characterization of 2′FL consumption and its moieties has revealed more pronounced growth, pH drop, and lactic acid production after 2′FL consumption when both microorganisms were grown together. The results point to an association between B. bifidum IPLA20048 and L. gasseri IPLA20136 in which L. gasseri is able to use the galactose from the lactose moiety after the hydrolysis of 2′FL by B. bifidum. The additional screening of two groups of bifidobacteria (n = 38), fast and slow degraders of 2′FL, in co-culture with lactobacilli confirmed a potential cross-feeding mechanism based on degradation products released from bifidobacterial 2′FL break-down. Our work suggests that this phenomenon may be widespread among lactobacilli and bifidobacteria in the infant gut. More investigation is needed to decipher how the ability to degrade 2′FL and other human milk oligosaccharides could influence the microbiota establishment in neonates and the evolution of the microbiota in adult life.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Reference44 articles.

1. WHO (2001). The Optimal Duration of Exclusive Breastfeeding: A Systematic Review: Report of an Expert Consultation.

2. Gold Standard for Nutrition: A Review of Human Milk Oligosaccharide and Its Effects on Infant Gut Microbiota;Zhang;Microb. Cell Fact.,2021

3. From Lab Bench to Formulated Ingredient: Characterization, Production, and Commercialization of Human Milk Oligosaccharides;Walsh;J. Funct. Foods,2020

4. Maternal Diet Is Associated with Human Milk Oligosaccharide Profile;Gueimonde;Mol. Nutr. Food Res.,2022

5. Human Milk Oligosaccharides: Every Baby Needs a Sugar Mama;Bode;Glycobiology,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3