Alternative to Conventional Solutions in the Development of Membranes and Hydrogen Evolution Electrocatalysts for Application in Proton Exchange Membrane Water Electrolysis: A Review

Author:

Perović Klara1,Morović Silvia1,Jukić Ante1,Košutić Krešimir1ORCID

Affiliation:

1. Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia

Abstract

Proton exchange membrane water electrolysis (PEMWE) represents promising technology for the generation of high-purity hydrogen using electricity generated from renewable energy sources (solar and wind). Currently, benchmark catalysts for hydrogen evolution reactions in PEMWE are highly dispersed carbon-supported Pt-based materials. In order for this technology to be used on a large scale and be market competitive, it is highly desirable to better understand its performance and reduce the production costs associated with the use of expensive noble metal cathodes. The development of non-noble metal cathodes poses a major challenge for scientists, as their electrocatalytic activity still does not exceed the performance of the benchmark carbon-supported Pt. Therefore, many published works deal with the use of platinum group materials, but in reduced quantities (below 0.5 mg cm−2). These Pd-, Ru-, and Rh-based electrodes are highly efficient in hydrogen production and have the potential for large-scale application. Nevertheless, great progress is needed in the field of water electrolysis to improve the activity and stability of the developed catalysts, especially in the context of industrial applications. Therefore, the aim of this review is to present all the process features related to the hydrogen evolution mechanism in water electrolysis, with a focus on PEMWE, and to provide an outlook on recently developed novel electrocatalysts that could be used as cathode materials in PEMWE in the future. Non-noble metal options consisting of transition metal sulfides, phosphides, and carbides, as well as alternatives with reduced noble metals content, will be presented in detail. In addition, the paper provides a brief overview of the application of PEMWE systems at the European level and related initiatives that promote green hydrogen production.

Publisher

MDPI AG

Subject

General Materials Science

Reference160 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3