High-Performance Hydrogen-Selective Pd-Ag Membranes Modified with Pd-Pt Nanoparticles for Use in Steam Reforming Membrane Reactors

Author:

Petriev Iliya12ORCID,Pushankina Polina1ORCID,Andreev Georgy1,Ivanin Sergei1,Dzhimak Stepan12ORCID

Affiliation:

1. Department of Physics, Kuban State University, Krasnodar 350040, Russia

2. Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don 344006, Russia

Abstract

A unique method for synthesizing a surface modifier for metallic hydrogen permeable membranes based on non-classic bimetallic pentagonally structured Pd-Pt nanoparticles was developed. It was found that nanoparticles had unique hollow structures. This significantly reduced the cost of their production due to the economical use of metal. According to the results of electrochemical studies, a synthesized bimetallic Pd-Pt/Pd-Ag modifier showed excellent catalytic activity (up to 60.72 mA cm−2), long-term stability, and resistance to COads poisoning in the alkaline oxidation reaction of methanol. The membrane with the pentagonally structured Pd-Pt/Pd-Ag modifier showed the highest hydrogen permeation flux density, up to 27.3 mmol s−1 m−2. The obtained hydrogen flux density was two times higher than that for membranes with a classic Pdblack/Pd-Ag modifier and an order of magnitude higher than that for an unmodified membrane. Since the rate of transcrystalline hydrogen transfer through a membrane increased, while the speed of transfer through defects remained unchanged, a one and a half times rise in selectivity of the developed Pd-Pt/Pd-Ag membranes was recorded, and it amounted to 3514. The achieved results were due to both the synergistic effect of the combination of Pd and Pt metals in the modifier composition and the large number of available catalytically active centers, which were present as a result of non-classic morphology with high-index facets. The specific faceting, defect structure, and unusual properties provide great opportunities for the application of nanoparticles in the areas of membrane reactors, electrocatalysis, and the petrochemical and hydrogen industries.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3