Nano-Management Approaches for Salt Tolerance in Plants under Field and In Vitro Conditions

Author:

Sári Daniella1,Ferroudj Aya1,Abdalla Neama23ORCID,El-Ramady Hassan14ORCID,Dobránszki Judit3ORCID,Prokisch József1

Affiliation:

1. Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary

2. Plant Biotechnology Department, Biotechnology Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza 12622, Egypt

3. Centre for Agricultural Genomics and Biotechnology, FAFSEM, University of Debrecen, 4400 Nyíregyháza, Hungary

4. Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt

Abstract

Soil salinity is a serious global problem that threatens a high percentage of the global soils. Salinity stress can create ionic, oxidative, and osmotic stress, along with hormonal imbalances, in stressful plants. This kind of stress was investigated on agricultural productivity at different levels, starting in vitro (plant tissue culture), through hydroponics, pots, and field conditions. Several approaches were studied for managing salinity stress, including using traditional materials (e.g., gypsum, sulfur), organic amendments (e.g., compost, biochar, chitosan), and applied manufactured or engineered nanomaterials (NMs). Application of nanomaterials for ameliorating salinity stress has gained great attention due to their high efficiency, eco-friendliness, and non-toxicity, especially biological nanomaterials. The application of NMs did not only support growing stressful plants under salinity stress but also increased the yield of crops, provided an economically feasible nutrient management approach, and was environmentally robust for sustainable crop productivity. Nano-management of salinity may involve applying traditional nano-amendments, biological nanomaterials, nano-enabled nutrients, nano-organic amendments, derived smart nanostructures, and nano-tolerant plant cultivars. Producing different plant cultivars that are tolerant to salinity can be achieved using conventional breeding and plantomics technologies. In addition to the large-scale use of nanomaterials, there is an urgent need to address and treat nanotoxicity. This study aims to contribute to this growing area of research by exploring different approaches for nano-management of current practices under salinity stress under field and in vitro conditions. This study also raises many questions regarding the expected interaction between the toxic effects of salinity and NMs under such conditions. This includes whether this interaction acts positively or negatively on the cultivated plants and soil biological activity, or what regulatory ecotoxicity tests and protocols should be used in research.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3