Integrative Effects of Zinc Nanoparticle and PGRs to Mitigate Salt Stress in Maize

Author:

Seleiman Mahmoud F.1ORCID,Ahmad Awais1,Alshahrani Thobayet S.1

Affiliation:

1. Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

Abstract

Salinity is one of the most critical problems for agricultural development and threatens future food safety. Therefore, we aimed to investigate root application of zinc oxide nanoparticles (ZnO-NPs; 0, 50, 100 mg/L), 24-epibrassinolide (EBL; 0, 0.02, 0.04 µM), and their combinations on the growth and performance of maize (Zea mays L.) as a model plant grown under salt stress (i.e., 0, 5 and 10 dS m−1) in a hydroponic system. The results showed that the highest salt stress negatively affected growth, physiological, and biochemical traits of maize. However, the application of EBL, ZnO-NPs, and their combinations significantly mitigated salt stress and improved the growth and performance of the physiological system in maize plants. In particular, the combination treatment of 100 mg/L ZnO-NPs + 0.02 µM EBL surpassed all other root treatments and resulted in the highest root and shoot growth, leaf area, relative leaf water content, net photosynthesis, total chlorophyll content, and uptake of zinc (Zn) and potassium (K). Furthermore, it minimized salt stress by reducing Na uptake, Na/K ratio, and proline in stressed maize plants. For example, the combination treatment of 100 mg/L ZnO-NPs + 0.02 µM EBL improved root length by +175%, shoot length by +39%, leaf area by +181%, RWC by +12%, net photosynthesis by +275, total chlorophyll content by +33%, and total phenolic content by +38%, in comparison to those obtained from the control, respectively. Furthermore, it enhanced the roots and leaves uptake of Zn under high salt stress treatment (i.e., 10 dS m−1) by +125% and +94%, and K+ by +39% and +51%, as compared to those grown without any of NPs or EBL treatments, respectively. Thus, the root application of 100 mg/L ZnO-NPs + 0.02 µM EBL can be a potential option to mitigate salt stress and improve the physiological, biochemical, and performance of strategy crops such maize.

Funder

Deputyship for Research and Innovation, “Ministry of Education” in Saudi Arabia

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference91 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3