Abstract
The effect of polymer chain ordering on the transport properties of the polymer membrane was examined for the semi-crystalline heterocyclic polyetherimide (PEI) BPDA-P3 based on 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) and diamine 1,4-bis [4-(4-aminophenoxy)phenoxy]benzene (P3). All-atom Molecular Dynamics (MD) simulations were used to investigate the gas diffusion process carried through the pores of a free volume several nanometers in size. The long-term (~30 μs) MD simulations of BPDA-P3 were performed at T = 600 K, close to the experimental value of the melting temperature (Tm ≈ 577 K). It was found during the simulations that the transition of the PEI from an amorphous state to an ordered one occurred. We determined a decrease in solubility for both the gases examined (CO2 and CH4), caused by the redistribution of free volume elements occurring during the structural ordering of the polymer chains in glassy state (Tg ≈ 481 K). By analyzing the diffusion coefficients in the ordered state, the presence of gas diffusion anisotropy was found. However, the averaged values of the diffusion coefficients did not differ from each other in the amorphous and ordered states. Thus, permeability in the observed system is primarily determined by gas solubility, rather than by gas diffusion.
Funder
Russian Science Foundation
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Reference87 articles.
1. Future Directions of Membrane Gas Separation Technology
2. 50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities
3. Ube increases membrane production
4. UBE Corporation
https://www.ube.com/contents/en/chemical/separation/index.html
5. Air Liquid’s Newsletter “Membrane Solutions for Natural Gas Treatment”
https://www.airliquideadvancedseparations.com/membrane-solutions-natural-gas-treatment
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献