The Transport Properties of Semi-Crystalline Polyetherimide BPDA-P3 in Amorphous and Ordered States: Computer Simulations

Author:

Dobrovskiy Alexey Y.,Nazarychev Victor M.ORCID,Volgin Igor V.ORCID,Lyulin Sergey V.ORCID

Abstract

The effect of polymer chain ordering on the transport properties of the polymer membrane was examined for the semi-crystalline heterocyclic polyetherimide (PEI) BPDA-P3 based on 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) and diamine 1,4-bis [4-(4-aminophenoxy)phenoxy]benzene (P3). All-atom Molecular Dynamics (MD) simulations were used to investigate the gas diffusion process carried through the pores of a free volume several nanometers in size. The long-term (~30 μs) MD simulations of BPDA-P3 were performed at T = 600 K, close to the experimental value of the melting temperature (Tm ≈ 577 K). It was found during the simulations that the transition of the PEI from an amorphous state to an ordered one occurred. We determined a decrease in solubility for both the gases examined (CO2 and CH4), caused by the redistribution of free volume elements occurring during the structural ordering of the polymer chains in glassy state (Tg ≈ 481 K). By analyzing the diffusion coefficients in the ordered state, the presence of gas diffusion anisotropy was found. However, the averaged values of the diffusion coefficients did not differ from each other in the amorphous and ordered states. Thus, permeability in the observed system is primarily determined by gas solubility, rather than by gas diffusion.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Reference87 articles.

1. Future Directions of Membrane Gas Separation Technology

2. 50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities

3. Ube increases membrane production

4. UBE Corporation https://www.ube.com/contents/en/chemical/separation/index.html

5. Air Liquid’s Newsletter “Membrane Solutions for Natural Gas Treatment” https://www.airliquideadvancedseparations.com/membrane-solutions-natural-gas-treatment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3