3D Printed Liquid Crystal Polymer Thermosiphon for Heat Transfer under Vacuum

Author:

Seshadri Bharath1ORCID,Hischier Illias1,Masania Kunal2,Schlueter Arno1

Affiliation:

1. Architecture and Building Systems ETH Zurich Stefano Franscini Platz 1 Zurich 8093 Switzerland

2. Shaping Matter Laboratory Faculty of Aerospace Engineering TU Delft Kluyverweg 1 Delft 2629 HS The Netherlands

Abstract

AbstractA novel approach is presented to 3D print vacuum–tight polymer components using liquid crystal polymers (LCPs). Vacuum–tight components are essential for gas storage and passive heat transfer, but traditional polymer 3D printing methods often suffer from poor interfaces between layers and high free volume, compromising vacuum integrity. By harnessing the unique properties of LCPs, including low free volume and low melt viscosity, highly ordered domains are achieved through nematic alignment of polymer chains. Critical gas–barrier properties are demonstrated, even in thin, single–print line–walled samples ranging from 0.8 to 1.6 mm. A 200 mm evacuated thermosiphon is successfully printed, which exhibits a thermal resistance of up to 2.18 K/W and an effective thermal conductivity of up to 28 W/mK at 60 °C. These values represent a significant increase compared to the base LCP material. Furthermore, the geometric freedom, enabled by 3D printing through the fabrication of complex–shaped thermosiphons, is showcased. The authors study highlights the potential of LCPs as high–performance materials for 3D printing vacuum–tight components with intricate geometries, opening new avenues for functional design. An application of integrating 3D printed thermosiphons as selective heat transfer components in building envelopes is presented, contributing to greenhouse gas emissions mitigation in the construction sector.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3