Optimal Route Generation and Route-Following Control for Autonomous Vessel

Author:

Kim Min-Kyu1,Kim Jong-Hwa2,Yang Hyun3

Affiliation:

1. Korea Ocean Satellite Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea

2. Ocean Science and Technology School, Korea Maritime and Ocean University, Busan 49112, Republic of Korea

3. Division of Maritime AI & Cyber Security, Korea Maritime and Ocean University, Busan 49112, Republic of Korea

Abstract

In this study, basic research was conducted regarding the era of autonomous vessels and artificial intelligence (deep learning, big data, etc.). When a vessel is navigating autonomously, it must determine the optimal route by itself and accurately follow the designated route using route-following control technology. First, the optimal route should be generated in a manner that ensures safety and reduces fuel consumption by the vessel. To satisfy safety requirements, sea depth, under-keel clearance, and navigation charts are used; algorithms capable of determining and shortening the distance of travel and removing unnecessary waypoints are used to satisfy the requirements for reducing fuel consumption. In this study, a reinforcement-learning algorithm-based machine learning technique was used to generate an optimal route while satisfying these two sets of requirements. Second, when an optimal route is generated, the vessel must have a route-following controller that can accurately follow the set route without deviation. To accurately follow the route, a velocity-type fuzzy proportional–integral–derivative (PID) controller was established. This controller can prevent deviation from the route because overshoot rarely occurs, compared with a proportional derivative (PD) controller. Additionally, because the change in rudder angle is smooth, energy loss by the vessel can be reduced. Here, a method for determining the presence of environmental disturbance using the characteristics of the Kalman filter innovation process and estimating environmental disturbance with a fuzzy disturbance estimator is presented, which allows the route to be accurately maintained even under conditions involving environmental disturbance. The proposed approach can automatically set the vessel’s optimal route and accurately follow the route without human intervention, which is useful and can contribute to maritime safety and efficiency improvement.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korea government

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3