Affiliation:
1. State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
Abstract
Petroleum was the most-consumed energy source in the world during the past century. With the continuous global consumption of conventional oil, shale oil is known as a new growth point in oil production capacity. However, medium–low mature shale oil needs to be exploited after in situ conversion due to the higher viscosity of oil and the lower permeability of shale. This paper summarizes previous studies on the process of kerogen cracking to generate oil and gas, and the development of micropore structures and fractures in organic-rich shale formations during in situ conversion. The results show that the temperature of kerogen cracking to generate oil and gas is generally 300–450 °C during the oil shale in situ conversion process (ICP). In addition, a large number of microscale pores and fractures are formed in oil shale formation, which forms a connecting channel and improves the permeability of the oil shale formation. In addition, the principles and the latest technical scheme of ICP, namely, conduction heating, convection heating, reaction-heat heating, and radiation heating, are introduced in detail. Meanwhile, this paper discusses the influence of the heating mode, formation conditions, the distribution pattern of wells, and catalysts on the energy consumption of ICP technology in the process of oil shale in situ conversion. Lastly, a fine description of the hydrocarbon generation process of the target formation, the development of new and efficient catalysts, and the support of carbon capture and storage in depleted organic-rich shale formations after in situ conversion are important for improving the future engineering efficiency of ICP.
Funder
National Natural Science Foundation of China
GIGCAS
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献