Effects of inclination angle and confining pressure on triaxial unloading-induced slip behaviors of shale fractures

Author:

Liu Yi,Li Zihan,Zhao Shisen,Jiang Jian,Yuan Chao

Abstract

To explore the effects of fracture inclination angle θ and confining pressure σ3t on the slip behaviors and friction properties of fractures, the triaxial unloading-induced slip experiments were performed on the shale fractures. The results show that the σ3t controls the slip modes of fractures, while the θ affects the occurrence of the stick-slip events during the quasi-static slip stage. With the increase in σ3t, the main slip modes of fracture transform from the stable-slip to stick-slip, and eventually to the creep-slip. The increase in θ facilitated the occurrence of stick-slip events. As the θ increased from 30° to 50°, the number of stick-slip events increased from 0 to 3 and from 2 to 4 for σ3t = 10 MPa and 20 MPa, respectively. For σ3t = 40 MPa, no stick-slip event occurred in the slipping process. The θ and σ3t have great effects on interaction modes between asperities, which directly affected the friction properties of fractures. With increasing σ3t, the void spaces between the asperities were further compacted, resulting in the transition of asperity interaction from overriding mode to shear-off mode. The transition of asperity interaction model therefore brought about the weakening of friction coefficient at the activation point and the onset of dynamic slip stage. There is a competitive relationship between the θ and σ3t for the evolution of the friction properties of fractures. As the θ increase from 30° to 50°, for σ3t = 10 MPa, the mean sheared-off thickness decreased from 0.502 mm to 0.433 mm, while for σ3t = 40 MPa, the mean sheared-off thickness decreased from 0.505 mm to 0.319 mm. With the increment of θ, the anisotropy of joint roughness coefficient was weakened. We suggested that by adjusting the fracturing angle of hydro-fracturing, the earthquakes with large seismic moments may be effectively mitigated.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3