Apoptosis Imaging in Oncology by Means of Positron Emission Tomography: A Review

Author:

Van de Wiele Christophe,Ustmert Sezgin,De Spiegeleer BartORCID,De Jonghe Pieter-Jan,Sathekge MikeORCID,Alex Maes

Abstract

To date, a wide variety of potential PET-apoptosis imaging radiopharmaceuticals targeting apoptosis-induced cell membrane asymmetry and acidification, as well as caspase 3 activation (substrates and inhibitors) have been developed with the purpose of rapidly assessing the response to treatment in cancer patients. Many of these probes were shown to specifically bind to their apoptotic target in vitro and their uptake to be enhanced in the in vivo-xenografted tumours in mice treated by means of chemotherapy, however, to a significantly variable degree. This may, in part, relate to the tumour model used given the fact that different tumour cell lines bear a different sensitivity to a similar chemotherapeutic agent, to differences in the chemotherapeutic concentration and exposure time, as well as to the different timing of imaging performed post-treatment. The best validated cell membrane acidification and caspase 3 targeting radioligands, respectively 18F-ML-10 from the Aposense family and the radiolabelled caspase 3 substrate 18F-CP18, have also been injected in healthy individuals and shown to bear favourable dosimetric and safety characteristics. However, in contrast to, for instance, the 99mTc-HYNIC-Annexin V, neither of both tracers was taken up to a significant degree by the bone marrow in the healthy individuals under study. Removal of white and red blood cells from the bone marrow through apoptosis plays a major role in the maintenance of hematopoietic cell homeostasis. The major apoptotic population in normal bone marrow are immature erythroblasts. While an accurate estimate of the number of immature erythroblasts undergoing apoptosis is not feasible due to their unknown clearance rate, their number is likely substantial given the ineffective quote of the erythropoietic process described in healthy subjects. Thus, the clinical value of both 18F-ML-10 and 18F-CP18 for apoptosis imaging in cancer patients, as suggested by a small number of subsequent clinical phase I/II trials in patients suffering from primary or secondary brain malignancies using 18F-ML-10 and in an ongoing trial in patients suffering from cancer of the ovaries using 18F-CP18, remains to be proven and warrants further investigation.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3