Experimental Investigation of the Dynamic Responses of Thin-Walled and Foam-Filled Steel Tubes Subjected to Repeated Impacts

Author:

Ge Jing12ORCID,Luo Tingyi3,Qiu Jun14

Affiliation:

1. School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

2. Jiangsu Hongyuan Science and Technology Engineering Co., Ltd., Changzhou 213161, China

3. Guangxi Beitou Highway Construction and Investment Group Co., Ltd., Nanning 530028, China

4. Key Laboratory of Advanced Civil Engineering Materials (Tongji University), Ministry of Education, Shanghai 201804, China

Abstract

In this study, a horizontal impact setup was used to measure the dynamic responses of specimens fixed on a reaction wall and subjected to repeated impacts generated by a large-tonnage impactor. The contact force, deformation process, energy absorption, and other properties of two specimens (a thin-walled steel tube and foam-filled steel tube) were thoroughly investigated. The results demonstrated that the thin-walled tube’s properties were consistent with the four-phase and six-phase deformation models and that the foam-filled tube’s properties were consistent with the two-phase deformation model. In the early stages of the experiment, the foam-filled and thin-walled tubes were similar in terms of the contact force and energy absorption. However, when the polyurethane (PU) strain reached 0.8, the PU significantly increased the support of the tubes, reduced the contact force (by extending the contact time), and increased the energy absorption capacity by 33.6–43.5%. The crush curves of the specimens were in agreement for cases involving multiple impacts, as well as for one impact with the same impact of kinetic energy. The crush curves can be used to assess the actual performance of crashworthy devices. Furthermore, after repeated impacts, the foam-filled tube exhibited a pseudo-shakedown behavior.

Funder

Jiangsu Province Key R&D Project

the Key Basic Research Project of Shanghai

the List of Key Science and Technology Projects in the Transportation Industry of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3