Response of Functionally Graded Preplaced Aggregate Fibrous Concrete with Superior Impact Strength

Author:

Murali Gunasekaran,Prasad Nandhu,Abid Sallal R.ORCID,Vatin Nikolai IvanovichORCID

Abstract

This research examines the modified drop-mass impact performance on functionally graded preplaced aggregate fibrous concrete (FPAFC) against repeated low-velocity impacts. Three-layered FPAFCs were prepared with the outer layers reinforced with steel and polypropylene fibers to evaluate the impact resistance. For comparison, both one- and two-layered concretes were cast simultaneously. The modified version of the impact test was suggested to the ACI 544 drop-mass impact test to decrease the scattered test data. The modification was a replacement of the steel ball with a steel bar to apply a line impact instead of the single-point impact. This modification distributes the impact energy over a broader area and reduces the scattering of results. The study parameters for the tests were impact numbers, which cause first cracking and failure; ductility index; and mode of failure. In addition, three methods of the two-parameter Weibull distribution were used to examine the dispersed test results, which were presented in terms of reliability. Results revealed that the specimens comprising 3.6% steel fibers at the top layer and no fiber at the middle layer exhibited the highest percentage improvements of 633% and 2732% recorded for the cracking and failure impact number, respectively. The percentage difference in impact strength results between these two methods ranged from −14% to 75% for cracking impact number and from 6.8% to 57.2% for failure impact number. The coefficient of variation value calculated from the modified impact test was reduced and ranged from 20.3% to 56.1% for cracking impact number and from 15.2% to 65.3% for failure impact number, compared with the same mixtures from the ACI 544 test method. This phenomenon indicates that the modified impact test delivered a lower scattering of results by introducing a line of impact using a steel bar rather than a single-point impact.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3