Cancer Metastasis Prediction and Genomic Biomarker Identification through Machine Learning and eXplainable Artificial Intelligence in Breast Cancer Research

Author:

Yagin Burak1ORCID,Yagin Fatma1ORCID,Colak Cemil1ORCID,Inceoglu Feyza2,Kadry Seifedine345ORCID,Kim Jungeun6

Affiliation:

1. Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya 44280, Turkey

2. Department of Biostatistics, Faculty of Medicine, Malatya Turgut Ozal University, Malatya 44090, Turkey

3. Department of applied Data science, Noroff University College, 4612 Kristiansand, Norway

4. Artificial Intelligence Research Center (AIRC), Ajman University, Ajman 346, United Arab Emirates

5. Department of Electrical and Computer Engineering, Lebanese American University, Byblos 36, Lebanon

6. Department of Software, Kongju National University, Cheonan 31080, Republic of Korea

Abstract

Aim: Method: This research presents a model combining machine learning (ML) techniques and eXplainable artificial intelligence (XAI) to predict breast cancer (BC) metastasis and reveal important genomic biomarkers in metastasis patients. Method: A total of 98 primary BC samples was analyzed, comprising 34 samples from patients who developed distant metastases within a 5-year follow-up period and 44 samples from patients who remained disease-free for at least 5 years after diagnosis. Genomic data were then subjected to biostatistical analysis, followed by the application of the elastic net feature selection method. This technique identified a restricted number of genomic biomarkers associated with BC metastasis. A light gradient boosting machine (LightGBM), categorical boosting (CatBoost), Extreme Gradient Boosting (XGBoost), Gradient Boosting Trees (GBT), and Ada boosting (AdaBoost) algorithms were utilized for prediction. To assess the models’ predictive abilities, the accuracy, F1 score, precision, recall, area under the ROC curve (AUC), and Brier score were calculated as performance evaluation metrics. To promote interpretability and overcome the “black box” problem of ML models, a SHapley Additive exPlanations (SHAP) method was employed. Results: The LightGBM model outperformed other models, yielding remarkable accuracy of 96% and an AUC of 99.3%. In addition to biostatistical evaluation, in XAI-based SHAP results, increased expression levels of TSPYL5, ATP5E, CA9, NUP210, SLC37A1, ARIH1, PSMD7, UBQLN1, PRAME, and UBE2T (p ≤ 0.05) were found to be associated with an increased incidence of BC metastasis. Finally, decreased levels of expression of CACTIN, TGFB3, SCUBE2, ARL4D, OR1F1, ALDH4A1, PHF1, and CROCC (p ≤ 0.05) genes were also determined to increase the risk of metastasis in BC. Conclusion: The findings of this study may prevent disease progression and metastases and potentially improve clinical outcomes by recommending customized treatment approaches for BC patients.

Funder

Technology Development Program of MSS

research grant of the Kongju National University

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3