Differentiation Model for Insomnia Disorder and the Respiratory Arousal Threshold Phenotype in Obstructive Sleep Apnea in the Taiwanese Population Based on Oximetry and Anthropometric Features

Author:

Tsai Cheng-YuORCID,Kuan Yi-Chun,Hsu Wei-Han,Lin Yin-Tzu,Hsu Chia-Rung,Lo Kang,Hsu Wen-Hua,Majumdar Arnab,Liu Yi-Shin,Hsu Shin-Mei,Ho Shu-Chuan,Cheng Wun-Hao,Lin Shang-Yang,Lee Kang-Yun,Wu DeanORCID,Lee Hsin-Chien,Wu Cheng-Jung,Liu Wen-TeORCID

Abstract

Insomnia disorder (ID) and obstructive sleep apnea (OSA) with respiratory arousal threshold (ArTH) phenotypes often coexist in patients, presenting similar symptoms. However, the typical diagnosis examinations (in-laboratory polysomnography (lab-PSG) and other alternatives methods may therefore have limited differentiation capacities. Hence, this study established novel models to assist in the classification of ID and low- and high-ArTH OSA. Participants reporting insomnia as their chief complaint were enrolled. Their sleep parameters and body profile were accessed from the lab-PSG database. Based on the definition of low-ArTH OSA and ID, patients were divided into three groups, namely, the ID, low- and high-ArTH OSA groups. Various machine learning approaches, including logistic regression, k-nearest neighbors, naive Bayes, random forest (RF), and support vector machine, were trained using two types of features (Oximetry model, trained with oximetry parameters only; Combined model, trained with oximetry and anthropometric parameters). In the training stage, RF presented the highest cross-validation accuracy in both models compared with the other approaches. In the testing stage, the RF accuracy was 77.53% and 80.06% for the oximetry and combined models, respectively. The established models can be used to differentiate ID, low- and high-ArTH OSA in the population of Taiwan and those with similar craniofacial features.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3