Author:
Alhindawi Reham,Abu Nahleh Yousef,Kumar Arun,Shiwakoti Nirajan
Abstract
In the past, different forecasting models have been proposed to predict greenhouse gas (GHG) emissions. However, most of these models are unable to handle non-linear data. One of the most widely known techniques, the Adaptive Neuro-fuzzy inference system (ANFIS), can deal with nonlinear data. Its ability to predict GHG emissions from road transportation is still unexplored. This study aims to fulfil that gap by adapting the ANFIS model to predict GHG emissions from road transportation by using the ratio between vehicle-kilometers and number of transportation vehicles for six transportation modes (passenger cars, motorcycle, light trucks, single-unit trucks, tractors, and buses) from the North American Transportation Statistics (NATS) online database over a period of 22 years. The results show that ANFIS is a suitable method to forecast GHG emissions from the road transportation sector.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献