Development of AI-Augmented optimization technique for analysis & prediction of modal mix in road transportation

Author:

Rauf HumaORCID,Umer Muhammad

Abstract

Transport sector contribution to global emissions is a known fact, however, the mitigation path to achieve nationally determined goals for carbon reduction is often not specified, A simplified technique based on minimax optimization using Grey relational grade and Random forest narrows down on most contributing input variables from twelve road transport modes. This is a region-specific, scenario-based technique applied to north Punjab, Province of Pakistan that first categorizes modes based on their emission and then integrates with AI modeling using Deep Neural Network to develop sustainable trade-offs for carbon reduction. The output parameter translates the problem into a systematic iterative technique that predicts optimization options with different scenarios to bring out an environment-friendly transport mix. A 25% reduction applied to the five most emission-releasing modes like Diesel Light and Heavy Duty vehicles, Gas Light and heavy-duty vehicles, and Gas-Cars results in 16.54 MT of Carbon dioxide which is 54.35% reduced to the predicted 36.24 MT for the year 2044. Similarly in another scenario replacing 25% Gas and Diesel Light Duty vehicles respectively by adding 50% Petrol Light Duty vehicles leads to 18.94 MT of emissions which brings the emission value in 2044 at par with emission releases of the year 2014. The technique offers a forward path that allows environment-friendly modal mix combinations based on business-as-usual to offer transport mix solutions for carbon reduction. It is a generalized model that is based on a customized transport mix. Future studies can also be applied to intermodal tradeoffs like rail, air, waterways, etc.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A system dynamic road transport modal mix emission analysis and prediction;Transportation Research Interdisciplinary Perspectives;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3